How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan).

نویسندگان

  • James T Park
  • Tsuyoshi Uehara
چکیده

SUMMARY The phenomenon of peptidoglycan recycling is reviewed. Gram-negative bacteria such as Escherichia coli break down and reuse over 60% of the peptidoglycan of their side wall each generation. Recycling of newly made peptidoglycan during septum synthesis occurs at an even faster rate. Nine enzymes, one permease, and one periplasmic binding protein in E. coli that appear to have as their sole function the recovery of degradation products from peptidoglycan, thereby making them available for the cell to resynthesize more peptidoglycan or to use as an energy source, have been identified. It is shown that all of the amino acids and amino sugars of peptidoglycan are recycled. The discovery and properties of the individual proteins and the pathways involved are presented. In addition, the possible role of various peptidoglycan degradation products in the induction of beta-lactamase is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The N-Acetylmuramic Acid 6-Phosphate Phosphatase MupP Completes the Pseudomonas Peptidoglycan Recycling Pathway Leading to Intrinsic Fosfomycin Resistance

Bacterial cells are encased in and stabilized by a netlike peptidoglycan (PGN) cell wall that undergoes turnover during bacterial growth. PGN turnover fragments are frequently salvaged by the cells via a pathway referred to as PGN recycling. Two different routes for the recycling of the cell wall sugar N-acetylmuramic acid (MurNAc) have been recognized in bacteria. In Escherichia coli and relat...

متن کامل

Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

UNLABELLED Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine ami...

متن کامل

Peptidoglycan Recycling in Gram-Positive Bacteria Is Crucial for Survival in Stationary Phase

Peptidoglycan recycling is a metabolic process by which Gram-negative bacteria reutilize up to half of their cell wall within one generation during vegetative growth. Whether peptidoglycan recycling also occurs in Gram-positive bacteria has so far remained unclear. We show here that three Gram-positive model organisms, Staphylococcus aureus, Bacillus subtilis, and Streptomyces coelicolor, all r...

متن کامل

Bacterial peptidoglycan (murein) hydrolases.

Most bacteria have multiple peptidoglycan hydrolases capable of cleaving covalent bonds in peptidoglycan sacculi or its fragments. An overview of the different classes of peptidoglycan hydrolases and their cleavage sites is provided. The physiological functions of these enzymes include the regulation of cell wall growth, the turnover of peptidoglycan during growth, the separation of daughter ce...

متن کامل

4-3. Cell wall structure of E. coli and B. subtilis

The structure of peptidoglycans of Escherichia coli and Bacillus subtilis is similar except for a few minor modifications, but murein (cell wall) structures are extremely different because the major cell wall constituents, anionic polymers, are not attached to peptidoglycans of E. coli but are attached to those of B. subtilis. Thickness of the cell walls in B. subtilis and the presence of an ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology and molecular biology reviews : MMBR

دوره 72 2  شماره 

صفحات  -

تاریخ انتشار 2008